MPI MiS mini-course: Hodge theory and periods of varieties
Exercise set 3

Prepared by Avi Kulkarni

Numbered theorems and exercises are with reference to [1].

1. Let $d > 0$ be even and let $f(w, x, y)$ be a homogeneous polynomial of degree d. Let S be the surface

$$S: z^2 = f(w, x, y)$$

in the weighted projective space $\mathbb{P}(1:1:1:d^2)$.

(a) Let U_w, U_x, U_y, U_z be the standard “coordinate charts” of $\mathbb{P}(1:1:1:d^2)$. Prove that the only point not in any of U_w, U_x, U_y is $(0:0:0:1)$.

(b) Show that $(0:0:0:1) \not\in S(\mathbb{C})$. In particular, the “chart” $S \cap U_z$ is redundant.

(c) Show that S is smooth if and only if the branch curve is smooth.

(d) (Exercise 1.3.1.) Show that S is connected.

2. Let S be a smooth double plane. Show that $H_1(S) = 0$ implies that $H_2(S)$ is torsion-free.

3. Read [1, page 55]. Within, you will see for a double plane defined by $S_w: z^2 = f(x, y)$ on the chart U_w, that the differentials

$$\omega = \frac{a(x, y)dx \wedge dy}{z}$$

extend to holomorphic differentials on all of S.

6. Let X be the blow-up of \mathbb{P}^2 at 6 points $\{p_1, \ldots, p_6\}$ in general position. Let $\{e_1, \ldots, e_6\}$ be the corresponding exceptional curves.

(a) Show that $\text{Pic}(X) \cong \mathbb{Z}(\ell, e_1, \ldots, e_6)$. Describe the lattice structure induced by the intersection pairing on X.

(b) Describe the exceptional curves on X in terms of curves on \mathbb{P}^2 passing through p_1, \ldots, p_6. How many exceptional curves on X are there?

(c) Determine the canonical divisor class of X in terms of the basis in part (a). Show that the dual canonical bundle is very ample and compute the anti-canonical model.

(d) Let C be a fixed plane cubic through the six points p_1, \ldots, p_6. Show that the isomorphism class of the triple $(X, C', \{e_1, \ldots, e_6\})$ is determined by $(C, \{p_1, \ldots, p_6\})$ up to linear automorphisms of \mathbb{P}^2, where C' is the strict transform of C and e_1, \ldots, e_6 are labeled pairwise skew exceptional curves on X. Note that the points are explicitly labeled as well.

Side note: We may be lead to believe that cubic surfaces have 4 moduli, coming from choosing 6 points in \mathbb{P}^2. This is indeed correct.
27. **Cubic surfaces!**

This exercise is based on Exercise 1.3.3. To give it a more “Non-linear algebra group” flavor, we restrict to cubic surfaces and make use of mathematical software\(^1\). Let \(S \subseteq \mathbb{P}^3 \) be a smooth cubic surface defined by \(f(x, y, z, w) = 0 \).

(a) Let \(\Omega^1_S \) be the cotangent sheaf. Compute \(\dim \mathbb{C} H^p(S, \Omega^\otimes q_S) \) for \(0 \leq p + q \leq 4 \). (Hint: use the fact that all smooth cubic surfaces are diffeomorphic.)

(b) Compute the Hodge numbers of \(S \). Show that \(S \) has no periods.

(c) Compare the dimension counts from the previous two exercises. Try this computation for varieties in different degrees, dimensions, etc. Especially for quartic surfaces in \(\mathbb{P}^3 \).

(d) Now let

\[
X : 0 = T^3 - f(x, y, z, w) \subseteq \mathbb{P}^4
\]

Compute the Hodge numbers of \(X \).

References

\(^1\)I used Macaulay 2 for this exercise.